Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.
نویسندگان
چکیده
A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.
منابع مشابه
A Fast-Converging Adaptive Frequency-Domain MVDR Beamformer for Speech Enhancement
In this paper, we present a fast-converging adaptive frequency-domain minimum-variance-distortionlessresponse (MVDR) beamformer (FMV) for speech enhancement. The well-known FMV solution is optimum in the microphone array processing. However, the direct computation of the optimum FMV solution is often undesirable due to the the inversion of the spatio-spectral correlation matrix which is often u...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملCrack Detection In Functionally Graded Beams Using Conjugate Gradient Method
In this paper the conjugate gradient (CG) method is employed for identifying the parameters of crack in a functionally graded beam from natural frequency measurement. The crack is modeled as a massless rotational spring with sectional flexibility. By using the Euler-Bernoulli beam theory on two separate beams respectively and applying the compatibility requirements of the crack, the characteris...
متن کاملSpatial - Temporal Subband Beamforming for Near Field Adaptive Array Processing
This thesis investigates broadband adaptive beamforming for signal targets located in the near field of an array. The primary application of this research is hands-free sound pickup and speech enhancement for wideband telephony. The technical challenges are three-fold. Broadband beamformers are difficult to design due to large frequency dependent beampattern variations and reduced performances ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2014